
Since (17) holds for any g in C p ,  and the rightmost two terms go 
to zero as n +m, it follows from (10) that MVJw,) + A,AT. To 
show that (9) converges to zero if o is not a signal frequency, it 
suffices to set A ,  = 0. Then o1 is no longer a signal frequency. 
In this case, (17) is bounded below by zero and above by only 
the rightmost two terms, both of which go the zero as n + W .  

This proves the theorem. 0 

This result justifies the use of the MV(n) spectrum in a wide 
variety of unknown stationary or nonstationary noise environ- 
ments. The proof provided explicit error bounds, (171, associ- 
ated with other signal components as well as the noise. Notice 
that the p x p matrix (l/n2)E,(ol)*T,,E,(o,) is simply the 
weighted discrete Fourier transform (DFT) estimate of the 
signal point spectrum, where the signal covariance data has 
been weighted by a triangular window. It follows from (17) that 
the DFT “spectrum” (l /n2)E,(~,~*TnE,(wl) also converges to 
the signal point spectrum as n +m for a large class of nonsta- 
tionary as well as stationary noise processes. If TNn corresponds 
to a nonstationary noise process, this quantity is not a spectrum 
in the usual sense. In any case, it also provides an upper bound 
for the MV(n) spectrum for each value of n. 
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Gambling Using a Finite State Machine 

Meir Feder 

Abstract -Sequential gambling schemes in which the amount wagered 
on the future outcome is determined by a finite state (FS) machine are 
defined and analyzed. It is assumed that the FS machine determines the 
fraction of the capital wagered at each time instance i on the outcome at 
the next time instance, i + 1, and that wagers are paid at even odds. The 
maximal capital achieved by any FS machine is found and its depen- 
dence on an empirical entropy measure, H%), defined as the finite 
state complexity of x is shown. A specific gambling scheme is then 
proposed based on the Lempel-Ziv method for universal compression. 
The capital gained by this method is found and observed that, asymptot- 
ically, its exponential growth rate dominates the exponential growth rate 
achieved by gambling using any FS machine. Furthermore, this specific 
scheme suggests a class of gambling methods, based on a class of 
variable-to-variable length (W) lossless compression methods, in which 
the capital is doubled for every bit compressed. These results emphasize 
the relation between gambling and data compression. 

Index Terms --Gambling, finite state machine, data compression, 
Lempel-Ziv algorithm, prediction. 

I. INTRODUCTION 

Gambling and information measures are strongly related, as 
observed in [3]. Suppose that an outcome sequence is generated 
by a known probabilistic source and that the goal in sequential 
gambling is to maximize the expected logarithm of the capital. 
The optimal gambling procedure, investigated further in [4], 
wagers on the event that the next outcome x , + ~  will be a, after 
observing x1 . . . x,, a fraction b, + ,(a) of the capital, where 

When wagers are paid at fair odds, the optimal expected loga- 
rithm of the capital satisfies 

where H(Xl,  . . ., X,,) is the joint entropy of the n outcomes of 
the source and A? is its entropy rate. We refer to [5], Ch. 4 for 
additional discussion about this relation. 

Universal sequential gambling schemes which consider each 
specific (individual) outcome sequence and thus try to optimize 
the yield in gambling over that sequence have been analyzed in 
[l], where a relation between the achievable capital gain of any 
gambling scheme and the algorithmic complexity of the specific 
outcome sequence has been established. By algorithmic com- 
plexity we refer to the complexity measures of Kolmogorov [6], 
Chaitin [7], and Solomonoff [8], which are related to each other. 
The universal scheme in [l], for the binary case, wagers on the 
event that x,+ will be “0,” after observing x1 . . . x,, a fraction 
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of the capital b,+ , ,  such that 
2 - 0 1  1 , O )  2 - 0 1  1 , O )  

- - 
b,+1= 2-41, 1 , O )  +2-I(x1 X,l) 2- / (x1  1 , )  ’ (3) 

where x 1  . . . x,O is the sequence x 1  . . . x ,  extended by 0, and 
Z(v) is the shortest codelength needld to represent the string v. 
This result is consistent with Solomonoff s probability estimate 
of a binary string v as p(v) = 2-””) = 2-l(’’’) + 2-’(’’’). When 
wagers are paid at even odds the capital available after n bets is 

s, = so. 2” - K 1 1  1”) = so.2n [ l - W 1 1  ~ . ) l ,  

where So is the initial capital and K ( x ; ) = l ( x ; ) / n  is the 
shortest normalized codelength (Kolmogorov’s complexity) of 

In this correspondence we analyze universal gambling on each 
specific sequence in a constrained scheme where the amount 
wagered on the future outcome of the sequence is determined 
by a finite state (FS) machine. More precisely, let the first n 
outcomes of some experiment be denoted, as before, x ; =  
x ,  . . . x ,  where, for simplicity, we consider a binary outcome 
sequence although the results can easily be extended to any 
finite alphabet. Let b , + ,  be the fraction of the capital wagered 
at time i on that the (i+l)st  outcome is “0” (of course a 
fraction 1 - b, + is wagered on that the outcome is “1”). A fair 
play is assumed, i.e., wagers are paid at even odds. A gambling 
procedure, defined by a finite state machine, is a function of the 
state s, and the outcome x ,  at time 1:  

(4) 

x ;  = x ,  . . . x, .  

where the state sequence is generated according to 

s,+1= g ( s f > x f ) .  (6) 
In the first part of the correspondence, we find an explicit 

expression for the maximal capital achieved by any FS machine. 
This bound on the performance has the form 

where H F S ( x ; ) ,  which is a measure based on the empirical 
entropy of x?,  is defined here as the finite state complexity of 
x; .  Unlike Kolmogorov’s complexity, this measure can be de- 
cided from the given observation sequence. 

An alternative definition for the finite state complexity is 
provided through the work of Ziv and Lempel, [9] ,  [ lo]  on 
universal lossless compression. In this work, a universal com- 
pression algorithm (LZ algorithm) is presented and its perfor- 
mance is used to determine bounds on the compressibility of the 
given sequence using a finite state encoder. Intuitively, following 
the notion of [ l ] ,  [2],  compression is related to the capital gain in 
gambling. In the second part of the correspondence, we suggest 
a gambling scheme related to the LZ compression algorithm and 
calculate the capital gain associated with that scheme. This 
gambling scheme is based on the interpretation of the LZ 
algorithm observed in [ l l ] ,  [12].  Using properties of the LZ 
algorithm it will be shown that the exponential growth rate of 
the capital exceeds, asymptotically, the capital growth rate 
achieved by any FS machine. Note that, in addition to its 
theoretical importance, the previous gambling scheme provides 
a specific readily implementable sequential gambling scheme 
which can take advantage of the compressibility of the outcome 
sequence to achieve capital gain. 

Another result, discussed in this correspondence, generalizes 
the idea used in deriving the gambling method induced by the 
LZ algorithm and suggests a class of practical gambling methods 

based on a class of sequentially adaptive variable-to-variable 
length (VV) lossless compression methods. In any of these 
methods the capital is doubled for every bit compressed. 

The sequential gambling problem raises, at least implicitly, 
the sequential prediction problem. The general finite state se- 
quential prediction formula can be written as 

% + l  = P ( S , , x , ) ,  (8) 

where the state sequence is generated as in (6). The optimal FS 
prediction is also determined, and the relationship between the 
finite state complexity and the fraction of prediction errors 
along the given outcome sequence is investigated. 

The general analysis of sequential gambling schemes, the 
maximal capital gain and the definition of the finite state 
complexity will be presented in the next section. The proposed 
gambling procedure, related to the Lempel-Ziv algorithm, its 
analysis, and the asymptotic behavior of the achievable capital 
gain of any FS machine will be discussed in Section 111. In 
Section IV, the performance of the general class of gambling 
schemes based on a class of sequentially adaptive variable-to- 
variable length compression methods will be analyzed. The FS 
prediction will be discussed in Section V and conclusions are 
presented in Section VI. 

11. FINITE STATE GAMBLING: BOUNDS AND 
GENERAL RESULTS 

A. Finite State Gambling 

Let the ouicome sequence be a binary sequence as previously 
defined. Assume that the initial capital is So and define xo  
arbitrarily to be 0. With these definitions the FS sequential 
gambling is totally determined by the functions f(., .) and 
g(.  , .) of ( 5 )  and (6). Note that the range of f(. , .) is the real 
interval [0 ,1]  while the range of g( . ; )  is the finite state set, 
which for the case of K states can be the set (1; . ., K } .  

When the finite state machine used for gambling is given, the 
capital that we have after n wagers were made, observing the 
sequence x; ,  is calculated as follows. 

Theorem I: Let n ( s , x )  be the number of times in the se- 
quence that the state s, = s and the corresponding outcome 
x ,  = x .  Let n(s, x,O) be the number of times that the next 
outcome x , + ,  = 0. Clearly n(s,  x,O)+ n(s, x ,  1) = n(s,  x ) .  Define 
a = n(s,  x ,O) /n ( s ,  x ) .  Then, the final capital at time n is given 
by, 

(9) s, = so. 241 -Es . n ( s , x ) / n ( - a l o g f ( s . x ) - ( l  -a)IogU - f ( s .1) ) )1 .  

Proof: Suppose that at time i the available capital is S,. An 
amount of b ,+ lS ,  is wagered on “Q.” Since wagers are paid at 
even odds the capital available after the outcome x ,  + , is known 
is 

S , + , = 2 b , + , S , ,  if x ,  + = “0,” 

S 1 + 1 = 2 ( 1 - b f + 1 ) S 1 ,  if x t + l = ‘ ‘ l , ”  ( 1 0 )  

or S I + ,  = 2S ,6 (b ,+ l ,  x , + ~ ) ,  where S ( b , + l ,  x , + ~ )  = b , + l  if 
x,+,=“O,” S ( b , + , , ~ , + ~ ) = l -  b ,+ ,  if ~ , + ~ = “ l . ”  

of the initial capital: 
We can now use (10) recursively and get the final S, in terms 

n - 1  
S, =So n 2 ~ ( b , + , , ~ , + ~ )  =So.2“[1+1/”~:--dl0Ps(b,+i,1,+i)l, 

r = O  

(11) 
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Arranging the summation in the exponent according to the 
0 

The interesting problem, of course, is to find the maximal 
capital gain in this context of gambling using finite state ma- 
chines. This requires the maximization of (9) with respect to 
f(., .), g ( . ,  .), and the initial state. While it is hard to solve 
analytically, this general maximization problem, determining the 
wagering function f(., .), is an easy task given the state se- 
quence. 

Theorem 2: The finite state wagering function that yields the 
maximal capital gain for a given state sequence and a specific 
outcome sequence x;, is given by 

states and recalling that b,,  = f(s,, x I )  leads to (9). 

The capital obtained after n wagers were made with this scheme 
is 

(13) sn = ~~.2n[l-E,,~n(s.x)/n h(u(s,x))l 

where h ( a )  = - a log a - (1 - a)log(l - a )  is the binary entropy 
of the fraction a. 

Proof: In order to maximize the capital gain we have to 
minimize the summation in the exponent of (9). Since we 
assume that the state sequence is given, n(s,  x)  and a(s, x) are 
known for the specific outcome sequence. Since a can have a 
different value for each s and x ,  we can minimize each term in 
the summation separately, and get each optimal value of f(. , . >. 
Using Jensen's inequality (or directly), 

arg min [ - a logf - (1 - a )  log(1- f)] = a (14) 

and the value of the minimum is just the binary entropy h(a).  0 

It is important to note that although the optimal gambling 
scheme derived in Theorem 2 above is sequential, as required, it 
is not found sequentially. The gambling specification requires 
the knowledge of quantities like n(s, x, j ) ,  which depend on the 
entire sequence. This observation emphasizes the importance of 
the constructive result later in the correspondence, which pro- 
vide a specific, nonanticipating, sequential gambling procedure. 

f 

B. Finite State Complexity 

Using the previous result (2) in analogy to the results in [l], 
we can define a state dependent complexity measure of the 
specific outcome sequence x; based on its conditional empirical 
entropy with respect to the state sequence. This measure will be 
a function of the transition rule g ( . ; )  and the initial state so, 
and will be denoted as 

(15) 

We then define the finite state (actually the K-state) complexity 
measure of the given outcome sequence as 

H ~ ~ , ~ (  x;) = min H;S,"( x;), (16) 
g E G K . s ~  

where G,  is the set of all K Z K  transition functions that corre- 
spond to FS machines with K states. This minimization can 
always be accomplished since we have to search over a finite set. 
Clearly, the capital in any K-state sequential gambling scheme, 

after n bets, is upper bounded by 

s n -  < s0.2n.[1-HFS '(x?)I. (17) 

H ~ ~ , ~ ( x )  = limsupHFS.K(x;), (18) 

Define now the following limit supremum: 

n +m 

where x = x1 . . . x, . . . is an infinite sequence. The limit supre- 
mum (18) provides an upper bound for the asymptotic growth 
rate of the capital as the length of the outcome sequence 
becomes large, i.e., 

1 S n  
Iiminf - log, - I 1 - IimsupHFSXK( x r )  
n + m  n So n +m 

A r F S , K ( X ) .  (19) = 1 - H F S x K  

This growth rate depends on the number of states, K .  As in [91 
we consider the asymptotic performance as the number of states 
goes to infinity, and we define the finite state complexity as 

H F S ( ~ )  = lim [ ~ i m s u p ~ ~ ~ , ~ ( x ; ) ]  
K + m  n + m  

= 1 - lim r F S , K ( x )  = 1 - r F s ( x ) ,  (20) 

where the limit for K always exists since the empirical entropy, 
for each n and thus for its limit supremum, monotonically 
decreases with K .  

Following the relation between the gambling yield and the 
complexity of the outcome sequence, as discussed in [l], the 
definition, (20), of the asymptotic minimum of the state-depen- 
dent conditional empirical entropy as the finite state complexity 
of x is motivated. The similarities to the definition of the 
compression ratios in [9] are also noted. 

K +m 

111. GAMBLING USING THE LEMPEL -ZIV 
COMPRESSION ALGORITHM 

The universal data compression algorithm suggested by 
Lempel and Ziv encodes variable length source strings according 
to a dictionary that contains past strings of the given sequence. 
The dictionary is updated sequentially according to the source 
symbols that have just been encoded. During the encoding 
process the input string is parsed into substrings. The complexity 
measure of a given sequence, as defined by Ziv and Lempel, is 
based on the number of parsed substrings, denoted c(x;) ,  in the 
given sequence, x ; .  A more detailed description of the 
Lempel-Ziv algorithm can be found in 191. 

In an interpretation of this procedure observed in [ll], 1121, 
the parsing is performed according to a sequence of dictionaries, 
each satisfies the prefix condition and thus can be represented 
by leaves of a tree. This representation of variable-to-block 
coding methods was first suggested in [13]. Now in the LZ 
method, for binary strings, the initial tree is {O,l}, i.e., a tree 
containing a root and two leaves. At each step we use the 
current dictionary to parse a string by following the path from 
the root to the leaf that corresponds to the source symbols. 
After a string is parsed, a new dictionary is generated by 
splitting the leaf that corresponds to the string v just parsed, 
making it an internal node and adding to the dictionary the two 
words (u0, vl) corresponding to the leaves descending from it. 

As an example, the sequence 00101010100~ . . is parsed into 
{0,01,010,1,0100, . . . }. The first few dictionaries, represented 
by trees, generated by this sequence are shown in Fig. 1. We 
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After " 0  After "01" Proof: Suppose that at the beginning of the jth parsed 
string, after i source symbols, the available capital is Sf. Suppose 
that the LZ algorithm parses now a new string of length I,. Also 
assume that the current (jth) dictionary size (which is the / 3\  2 /1  number assigned to the root node of the dictionary tree) is k,.  

2 4 \ Following the gambling method, the capital at the beginning of 

"0" Initial Dictionary / /l 

the next substring, S,+lJ, is 

24 

k ,  
s, + I ,  = Sf - 1 ( 2 2 )  "1" 

After "010" After "1" 

Final Dictionary: After "0100" 

\ 
2\1 

Fig. 1 .  Sequence of Lempel-Ziv dictionary trees. 

associate to each node in the dictionary trees a weight that is the 
number of leaves that belong to the subtree whose root is this 
node. Thus, all the leaves in the tree get the number 1, the root 
gets the total number of leaves, and the weight associated with 
each node is the sum of the weights associated with all its 
descendants. 

With this interpretation, the following gambling scheme is 
proposed. As previously described, the source symbols define 
paths in the dictionary trees; thus following v = x ,  . . . x ,  we 
reach some node in a dictionary tree. Each possible new out- 
come, x ,  + ,, determines a specific direction in the dictionary tree 
to continue the path. The amount b , + l  wagered on the event 
that, say, this outcome, is "0" will be the ratio between the 
weight of the child node that correspond to "v0" and the weight 
associated with the current node. After the bet is made and 
x , + ,  is known, the pointer moves to the corresponding child 
node, or, if this child node is a leaf, the tree is extended 
according to the LZ algorithm and the pointer moves to the root 
(in the last case the outcome x ,  + is the last symbol of a parsed 
substring). 

This specific gambling scheme can be analyzed explicitly. 

Theorem 3: The capital after n bets using the gambling 
scheme satisfies 

since it is the product of l j  terms of the form 2bm, m =  
i + 1,. . . , i + l j ,  and the product of the weights, [bm},  along the 
path is a telescopic product, which equals l / k ,  independently 
of the particular path. 

The initial dictionary size, k , ,  is 2; after gambling on each 
parsed string it increases by 1 ,  i.e., k j  = j + l .  Applying (22)  
recursively (and ignoring end effect, i.e., assuming that the 
outcome sequence ends with a parsed substring), the capital at 
the end of the outcome sequence can be expressed as 

Since ( c ( x ; ) +  l ) !  I ( c ( x ; ) +  l)'(';), (21)  is readily proved. 0 

As we recall, in the previous section an upper bound on the 
gambling yield, using any FS machine, was derived. This upper 
bound was not explicit; it was in terms of a minimum over all 
state sequences, see (16), and it was not related to the LZ 
complexity. We can now use a property of the LZ parsing, 
referred to as Ziv's inequality, that provides a lower bound for 
the finite state complexity, (15), and thus an upper bound on the 
finite state gambling yield, in terms of the quantity c ( x ; ) .  This 
bound holds for any state sequence and thus it will also be a 
bound for (16), for all finite K .  This result is summarized in the 
following theorem (originally shown in [14] )  presented here in 
the context of gambling. 

Theorem 4: Let the number of states in a finite state machine 
be K.  For any n and any finite sequence x ; = x l  . . . x , ,  the 
finite state complexity, H F S , K (  x ; )  is lower-bounded by 

and thus the capital achieved by the gambling scheme based on 
the LZ algorithm, after n bets, satisfies 

s n -  > ~ 0 2 " [ 1 - H F S . ~ ( X ; ) - ~ ( C ( X f ) . K , f l ) l )  ( 2 5 )  

where, for a fixed K , 6 ( c ( x ; ) ,  K , n ) +  0 and decays uniformly 
for all x ;  as O(loglogn/logn). 

The proof of this theorem is provided in [15] and [14].  A 
simpler and more intuitive proof, based on the interpretation of 
[ l l ] ,  can also be constructed as shown in [16].  

Summarizing the results of the previous theorems we see 
that first, from Theorem 5,  for each finite sequence length, 
n >  0, there exists a finite state gambling scheme of K ( n )  
states, the scheme based on the Lempel-Ziv algorithm, for 
which, the exponential growth rate, r L z ( x ; )  is at least 1 -  
n - ' c ( x ~ ) l o g [ c ( x ~ ) +  11. Second, from Theorem 6, when we 
compare this scheme to any scheme with a finite, fixed, number 
of states, then r L z ( x r )  2 r F s , J x ; ) -  S(c(x; ) ,  K,n).  As we let n 
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go to infinity, we get 

rLz( x )  2 1 - Iim x ; )  - Iim s ( .  , . , n) 
n + m  n + m  

where x = x, ;  . ., x,,  . . . is now an infinite sequence. This is 
true for any finite K .  Letting K go to infinity in (26), we get 
(since the left-hand side is independent of K )  

where r m ( x )  = 1 - H F S ( x )  and H F S ( x )  is defined in (20). 
Still, one can say that the domination of the scheme based on 

the Lempel-Ziv compression is due to an unfair comparison 
between an infinite state machine and a finite state one. To 
make this comparison fair, we investigate a “blocked” scheme 
based on the Lempel-Ziv algorithm in which the dictionary 
construction process is initialized at the beginning of each block. 
When the block size is n, this blocked scheme has a finite 
number of states, even when we gamble on the infinite sequence 
x .  The growth rate of the blocked scheme will be denoted 
ru(x ,n ) ,  and in the following theorem it is compared to the 
finite state exponential growth rate, rFs(x) .  

Theorem 5: For any infinite outcome sequence x = x1 . . . 
x ,  . . . and any E > 0, there exists a finite K ( E ) ,  such that the 
rate of the blocked LZ scheme satisfies 

where limn -~ S , ( K ( E ) ,  n) = E .  

Proof The exponential capital growth of the blocked LZ 
gambling method is, by definition, 

, (29) 

where x i  is the ith block. Now from Theorem 6. 

1 
1 - - log [ C( x i )  + 11 ! 2 1 - H F S , K (  x i )  - 6(  K ,  n) . (30) 

Also, 

where x 1  . . . x k  is the concatenation of the k blocks, and (31) is 
true since, by definition, each term in the RHS is minimized 
separately. Thus, combining (20) and (31), we get 

Now from the definition, (201, for any E > 0 there exists K ( E )  
such that H F S x K ( x )  I H F S ( x ) +  E .  Thus, we get 

r L z ( x , n )  2 1- H F S ( x ) -  E - 6 ( K ( ~ ) , n )  

= r F S (  .) - 6,( K (  E )  9 n) 3 (33) 

where 6 , ( K ( ~ ) , n ) =  E + 8 ( K ( ~ ) , n ) ,  whose limit as n goes to 
infinity is E .  0 

We note the similarity between this theorem and Theorem 2 
in [9]. We also recall that the entropy estimate of the Lempel-Ziv 
compression algorithm, for each sequence, is H L z ( x )  = 
n-lc(x)log c(x). Thus, the results of this section state that, 
asymptotically, the optimal but yet achievable finite state se- 
quential gambling scheme provides an increase of the capital by 
a factor of exp,(l - H L z ( x ) )  per each bet, an intuitively appeal- 
ing result. 

As a final note we can also use an additional property of the 
LZ data compression algorithm that states that if the outcome 
sequence is generated by a stationary ergodic source then 
n - ’ c ( x ) l o g c ( x >  --f A? with probability 1. Thus, when we use the 
universal gambling scheme to gamble on the outcome of an 
ergodic source we achieve, with probability 1, the optimal expo- 
nential growth rate without having to know in advance the 
source’s probability model. 

IV. GAMBLING USING A CLASS OF VARIABLE-TO-VARIABLE 
LENGTH (W) COMPRESSION METHODS 

The gambling scheme based on the LZ compression algorithm 
just presented was very useful in determining the asymptotic 
performance of finite state gambling schemes. However, its 
main importance lies, maybe, in the fact that it provides a 
specific, readily implementable, gambling procedure whose per- 
formance was analyzed and shown to have desired properties. 
This analysis can be extended to a class of variable-to-variable 
length, lossless, compression methods. In this section, we de- 
scribe the class and show that, for each of these schemes, the 
capital is doubled for every bit compressed. 

Variable-to-variable length (VV) source coding can be 
achieved by encoding source words, of variable size, using code 
words of variable size. The encoded source words are listed in a 
dictionary while the codewords are listed in a codebook. In the 
class of VV source coding methods, considered here, the source 
word dictionary is “complete,” i.e., the lengths of source words 
in the dictionary satisfy Kraft’s inequality, with equality. We also 
allow “adaptive” coding in which the dictionary and the code- 
book can vary after each source word is encoded in a sequential 
fashion. An example of a dictionary tree and a codebook for 
encoding the dictionary entries is shown in Fig. 2. 

The gambling procedure based on any VV compression 
method from the class previously described and its performance, 
is presented as follows. 

Theorem 6: For each W compression method, as described 
above, there exist a sequential gambling scheme such that if a 
source sequence of length n is encoded by a sequence of 
codewords of total size I, the capital S ,  after gambling on the 
outcome of the source sequence satisfies 

where So is the initial capital. 
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Source Word Dictionary 

CODE BOOK SOURCE WORDS 
No. Codeword Length No. Codeword Length 

~~ 

l o o  2 1 00 2 
2 0100 4 2 01OOo 5 
3 0101 4 3 01001 5 
4 011 3 4 0101 4 
5 loo 3 5 011 3 
6 101 3 6 10 2 
7 11 2 7 11 2 

Fig. 2.  Dictionary tree and codebook of a W compression. 

Proof: Consider the tree that represents the dictionary of 
source words, and assign a weight of 2-'< to each leaf where I, 
is the length of the codeword that encodes the source word 
represented by this leaf. Assign to each node a weight equal to 
the sum of the weights assigned to its children. Now, when 
gambling on the outcome of a specific source word, consider the 
path in the tree that corresponds to that word. The amount 
wagered on each bit is in proportion to the relative weights in 
the tree along the path, similar to the procedure used in the LZ 
gambling. The multiplication of the weights along each path s in 
the source dictionary, leading from the root to some leaf, is a 
telescopic product and it is exactly ~-'C(~)/C,~-'C(') where l,(s) 
is the codelength associated with the leaf that ends the path s. 
The capital gain when gambling on a string that corresponds to 
this path s is 

2-" 
(35)  yr. ~ 

2-" ' 
S 

where Cs2-'c(s) is the root weight that is the sum of the weights 
of all the leaves. Since Es2-'c(') I 1 due to Kraft's inequality (for 
the codebook), the capital gain is lower bounded by 2'3- 'c. 

Now, the sum of the lengths of the source words is the total 
source length n. The sum of the lengths of the codewords is the 
total code length I. The total capital gain is a multiplication of 
terms like (35); noticing that this multiplication results in a 
summation in the exponent, the total capital gain is lower 
bounded by 2"-'. 0 

We note that variable source length compression algorithms 
can also be based on dictionaries that do not satisfy the prefix 
condition. The tree representing the source strings may not be 
complete; in this case some source words are represented by 
internal nodes and not by leaves. It is easy to extend the result 
above to this case by assigning to an internal node that is also a 
source dictionary word, the sum of the weights assigned to its 
descendants plus a weight 2 - l ~  where I, is the length of the 
codeword that encodes this source word. We note that this 
extension may be useful for gambling using, say, Welch's modifi- 
cation of the Lempel-Ziv algorithm [17], which leads to non- 
complete dictionary trees. 

V. FINITE STATE PREDICTION 

Gambling involves a notion of prediction. However, in the 
gambling problem we end up estimating the probability of the 
next outcome without committing ourselves to a specific guess. 
It is thus natural to investigate explicitly the universal finite 
state prediction problem, where, as defined by (8), the goal for a 
good prediction is to minimize the number of prediction errors. 
The relation between FS gambling and FS prediction is also an 
interesting question. 

We now find the optimal FS prediction when the state se- 
quence is given. 

Theorem 7: Given the state sequence (i.e., given g(.;) and 
so>, the prediction function p ( .  , . ), which generates the smallest 
number of prediction errors in a given outcome sequence x ;  is 

( 3 6 )  
"0," if n ( s , , x , , O )  > n(si ,xi , l ) ,  { "1," otherwise. 

% + l = P ( S , , X i ) =  

Proof: The total number of prediction errors ne out of n 
(the size of the outcome sequence) can be written as 

ne = n - n, = n - C n ( s ,  x, a)  = n - C n ( s ,  x , p ( s ,  x ) ) ,  (37)  
s , x  s,  x 

where I t ,  is the number of correct predictions. Since the predic- 
tion is a function of the current state and current outcome, we 
can minimize each term in the sum separately and get (36). 0 

The finite-state prediction rule (36) assumes that the state 
sequence is given. To get the optimal FS prediction it is also 
required to find the best, in terms of minimum prediction 
errors, state sequence. It is hard to find this minimum analyti- 
cally; however, the minimum number of prediction errors, or its 
complement the maximum number of correct predictions, can 
be bounded in terms of the optimal gambling performance, i.e., 
in terms of the finite state empirical entropy, H F S r K ( x y ) .  This 
relation is presented in the following theorem. 

Theorem 8: for a specific outcome sequence xy = x1; . ., x,, 
of size n, the maximum number of correct predictions over x ;  
of any finite state predictor with K states is bounded by 

rz,""."(x;) I h - l ( H F S . K ( x ; ) ) . n ,  (38)  

where h - ' ( x ) ,  1/2 I x I 1, is the inverse of the binary entropy 
function. 

Proof: Let g and s define a state sequence of a FS machine 
used for prediction and denote by I t ,  = C,,,(n(s, x, a )  the num- 
ber of correct guesses when this state sequence together with 
(36) is used for prediction. Because the binary entropy function 
is concave, we can write 

= h ( ; ) .  (39) 

Now, 1/2 I n, / n  I 1, and since h ( x )  is monotonically decreas- 
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ing for 1/2 I x I 1, we get 

n, I h-’(H:S,o(x;)) .  (40) 
Let g’ and si be the state sequence generator and the initial 

state of the K-state machine that leads, together with (36), to 
the maximum number of correct predictions, nFS.K. Let 
H ~ s s f ( x ~ )  be the empirical entropy associated with this state 
sequence. From the definition, (16), HFSTK(x;) I H ~ ~ s r ( x ~ ) .  Us- 
ing this, the monotonicity of h-’(.), and (401, we get 

In general, the optimal state sequence for gambling, i.e., the 
state sequence that achieves H F S , K ( ~ ; ) ,  may not be the state 
sequence that minimizes the number of prediction errors. Sup- 
pose we use the state sequence that corresponds to the optimal 
K-state machine for gambling, (i.e., the state sequence that is 
found in the minimization of (16)) together with the prediction 
function (36) to make predictions and let r ? F S g K  be the number 
of correct prediction associated with this prediction scheme. 
Define = iiFS”./n and pFS,K = n ; s * K / n  as the fraction of 
correct predictions associated with the state sequence for gam- 
bling and the optimal state sequence for prediction, respectively. 
By definition, f i F S , K  I pFS*K, but from (41) 

( x ; ) ) .  (42) f iFS,K - < p F S , K  - < h-l(HFS,K 

Thus, given the optimal state sequence for gambling, we can 
calculate upper and lower bounds on the optimal fraction of 
correct predictions. Depending on the diversity of the correct 
prediction fractions that correspond to each state, these bounds 
may be loose or tight. Since the number of correct predictions is 
an integer, then if h- l (HFS,K(~;I ) ) .n  I f i F S , K . n  +1, we must 
have @FS,K = p F S y K ,  i.e., in this case the optimal state sequence 
for gambling leads, with (36), to the minimum number of predic- 
tion errors and thus it is the optimal state sequence for predic- 
tion as well. 

We have provided here only a preliminary analysis of the FS 
prediction problem, where we have focused on the relation 
between, the FS prediction and the FS gambling. The FS predic- 
tion problem is investigated in depth in [16]. 

VI. SUMMARY AND CONCLUSION 

Sequential gambling using a finite state machine has been 
defined and analyzed and the optimal achievable capital gain 
has been obtained. The exponential growth rate of the capital, 
i.e., l / n  log S,, / S o ,  has been considered. The quantities given 
by (15)-(20), which are based on the empirical conditional 
entropy of the outcome sequence, have been used to define the 
finite state complexity HFS and, as expected, it was shown that 
the exponential growth rate of the capital has the form of 

A specific sequential gambling scheme based on the 
Lempel-Ziv compression algorithm has been presented. The 
explicit determination of the probability estimate induced by the 
Lempel-Ziv compression algorithm, as noted in [ l l ]  and [12], is 
emphasized by the results presented here. The exponential 
growth rate of the capital has, asymptotically, the form 1- 
n-’c(x)logc(x), where c(x) is the number of distinct phrases, 
generated by the Lempel-Ziv parsing algorithm. By utilizing 
properties of the Lempel-Ziv compression (Ziv’s inequality) it 
was shown that the exponential growth rate of this gambling 
scheme dominates the growth rate of any finite state gambling 
scheme where the number of states is fixed. Also, using addi- 

1- HFS. 

tional properties of the LZ data compression scheme, if the 
outcome sequence is generated by an ergodic source, then the 
universal gambling scheme presented here achieves, with proba- 
bility 1, the optimal capital growth rate, despite the fact that the 
source probabilistic model is not available. 

Another result presented in the correspondence is a method 
for sequential gambling that can be based on any compression 
algorithm from a class of variable-to-variable length lossless 
compression algorithms. This method will double the capital for 
every bit compressed but it will also reduce the capital by half 
for every extra bit. The gambling method also reveals the 
probability estimate, in the sense of Solomonoff, induced by 
each of these compression algorithms. In fact the results here 
confirm and extend the work reported in [l], [2],  [MI, and 
elsewhere on the relation between gambling and data compres- 
sion. 

Several topics related to the work presented here call for 
further investigation. It will be interesting to achieve an explicit 
expression for the minimization of (16), and thus for the finite 
state complexity, as defined here, of an individual sequence. 
Also, the finite state prediction problem, introduced here, is 
currently investigated and it is analyzed in depth in [16]. 
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